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Self-accelerating optical beams form as a direct outcome of interference, initiated by a predesigned initial condition. In
a similar fashion, quantum mechanical particles exhibit force-free acceleration as a result of interference effects
following proper preparation of the initial Schrödinger wave function. Indeed, interference is at the heart of such
wave packets, and hence it is implied that self-accelerating wave packets must be coherent entities. Counter to that,
we demonstrate theoretically and experimentally spatially incoherent self-accelerating beams, in both the paraxial and
the nonparaxial domains. We show that in principle, the transverse correlation distance can be as short as a single
wavelength, while a properly designed initial beam will give rise to shape-preserving acceleration for the same distance
as a coherent accelerating beam propagating on the same trajectory. These findings expand the understanding of the
relation between coherence and accelerating beams, and may have implications for the design of self-accelerating
quantum wave packets with limited quantum coherence. © 2015 Optical Society of America
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1. INTRODUCTION

The field of accelerating wave packets has attracted extensive re-
search interest in the last several years, since the concept of Airy
wave packets (first formulated in quantum mechanics [1]) was
introduced into optics [2,3]. This acceleration, or self-bending—
in the case of spatial acceleration—is first and foremost an effect
of wave interference. In the regime of small angles (the paraxial
domain), proper design of the initial amplitude and phase can
generate a beam that propagates along a parabolic trajectory while
maintaining a shape-preserving Airy profile. Such self-bending
beams have led to many intriguing applications in the past several
years, including particle manipulations [4,5], curved plasma
channels [6], Airy plasmons [7–9], single-molecule imaging using
the curved point-spread function [10], light-sheet microscopy
using Airy beams [11], and even accelerating electron beams in
electron microscopes [12]. The concept of accelerating beams was
generalized to curved beams following arbitrary convex trajectories
[13–17], and accelerating beams were shown to allow additional
functional forms besides the Airy function [18]. Accelerating wave
packets were also proposed [2] and demonstrated [19,20] in the
temporal domain, where shape-preserving pulses accelerate for long
distances in dispersive media (fibers) until causality causes their
breakup [21]. Importantly, this concept was recently generalized
to the full Maxwell equations [22], thereby enabling large bending
angles close to 180° and features on the scale of a single wavelength
[23–26]. This beyond-paraxiality generalization introduces a

wealth of additional accelerating trajectories [27–29]. Likewise,
shape-preserving paraxial [30–32] and nonparaxial [33,34] self-
accelerating beams were also found in nonlinear media, such as
Kerr, saturable, and quadratic nonlinearities [31,35], and even in
nonlocal nonlinear media [36]. Finally, accelerating beams were
also found in nonhomogeneous landscapes such as waveguide
arrays [37] and photonic crystals [38]. The past seven years of
research on accelerating optical beams, together with the recent
demonstration of accelerating electron beams that took the concept
to the quantum domain [12], has proved that accelerating wave
packets exist in a very broad range of wave systems.

In all of these systems where accelerating wave packets were
explored, the underlying principle is wave interference, since the
entire effect of acceleration is the direct outcome of this most basic
property of waves of any kind. However, waves are not necessarily
fully phase coherent. In fact, natural light sources are generally
incoherent—because in most cases the emission of electromagnetic
radiation results from spontaneous emission. In the quantum do-
main, incoherence is introduced by coupling to the environment,
which inevitably causes dephasing and is generally perceived as
disruptive to any quantum process. Can shape-preserving acceler-
ating wave packets also occur in wave systems that are only partially
coherent? Can they occur in systems where the coherence length is
extremely short, comparable to a single wavelength?

Thus far, research on accelerating wave packets was focused on
coherent beams. The most common method for creating paraxial
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accelerating beams (Airy beams) is by shining the light through a
cubic phase mask. Thus, the natural extension beyond coherent
light would be to shine partially incoherent light through the
same cubic phase mask, as indeed has been studied theoretically
[39,40] and experimentally [41]. However, these few papers dis-
cussing self-accelerating beams using light that is not fully spa-
tially coherent have treated imperfect coherence as a disruptive
effect, claiming that the more incoherent a beam is, the shorter
the range of its acceleration [39,41]. Those papers did not attempt
to explain whether incoherence is indeed a fundamental limita-
tion, but left the impression that incoherent shape-preserving
accelerating beams are altogether impossible, due to the diminu-
tive effects incoherence has on the propagation of such beams.
Likewise, for other wave systems—from classical to quantum
[12]—the lack of perfect coherence was always perceived as dis-
ruptive, and incoherent shape-preserving accelerating wave pack-
ets were thought to be impossible altogether.

Here, we investigate spatially partially incoherent shape-
preserving accelerating beams, and demonstrate them theoreti-
cally and experimentally in both the paraxial and the highly
nonparaxial regimes. We find that partial spatial coherence does
not diminish the acceleration properties of the beam, provided
that the beam is properly designed. Moreover, we show that it is
possible to design accelerating beams with spatial transverse cor-
relation distances as short as a single wavelength, and the beams
still exhibit shape-preserving acceleration for the same distance as
a coherent accelerating beam propagating on the same trajectory.
Such highly incoherent accelerating beams display a single, broad
intensity lobe and a smooth profile, instead of the highly oscillating
one characteristic of all coherent accelerating beams. We provide
explicit criteria for maintaining the acceleration despite the inco-
herence, and suggest applications, such as particle manipulation
along curved paths [4,5,26], that could benefit greatly when the
bending beams are partially incoherent. Finally, these findings may
be beneficial for the design of self-accelerating quantum wave pack-
ets with limited quantum coherence.

2. THEORETICAL BACKGROUND

A. Spatial Incoherence

We begin by formulating the coherent-mode representation of
partially spatially incoherent quasimonochromatic beams [42].
We write the electric field as E�r⃗; t� � Re�U �r⃗; t�eiωt�, where
ω is the optical frequency and U �r⃗ ; t� is an envelope that fluc-
tuates much slower than the optical frequency. In this modal
theory, the field U �r⃗; t� can always be decomposed into a sum
of statistically independent orthogonal modes, written as

U �r⃗ ; t� �
X
n
cn�t�ψn�r⃗ �; (1)

where U �r⃗; t� is the randomly fluctuating field, ψn�r⃗ � are the
orthogonal modes that must satisfy boundary conditions in the
medium, and cn�t� are randomly fluctuating complex coefficients,
obeying hc�n�t�cn 0 �t�i � anδnn 0 , with an having real values repre-
senting the power associated with each mode and h·i indicating
time averaging over times longer than the characteristic fluctua-
tions time. The coherence function, defined as W �r⃗1; r⃗2� �
hU ��r⃗1; t�U �r⃗2; t�i, can now be written as

W �r⃗1; r⃗2� �
X
n

anψ�
n�r⃗1�ψn�r⃗2�: (2)

A fully coherent beam is comprised of a single spatial mode, while
a partially incoherent beam is comprised of an arbitrary number
of modes. The intensity of the beam is then written as I�r⃗ � �
W �r⃗ ; r⃗ � � Σnanjψn�r⃗ �j2, and the spatial correlation function
is μ�r⃗1; r⃗2� � W �r⃗1 ;r⃗2�ffiffiffiffiffiffiffi

I�r⃗1�
p ffiffiffiffiffiffiffi

I�r⃗2�
p . The characteristic features of the par-

tially spatially incoherent beam are determined by the properties
of the modes ψn�r⃗ �. For example, with broad incoherent beams, a
common model is to use plane waves as the independent modes,
and the spatial spectrum of such plane waves then determines the
coherence length. Another commonly used model is the Gaussian
Schell-model [42], in which the modes used are Hermite–
Gaussian modes. It is important to note that the expansion of
Eqs. (1) and (2) can also be written using nonorthogonal modes,
provided each mode ψn�r⃗ � obeys the Helmholtz equation indi-
vidually and that the coefficients cn are without correlation.

B. Self-Accelerating Beams

We proceed by recalling the accelerating solutions of Maxwell’s
equations [22]. In vacuum, the time-harmonic electric field obeys
the Helmholtz equation:

∇2E⃗ � k2E⃗ � 0; (3)

where k is the wavenumber. The accelerating solution for the
Helmholtz equation was shown to move along a circular trajec-
tory [22]. For a TE-polarized electric field, E⃗ � Ey�x; z�ŷ can be
written as

Ey�x; z� �
Z

k

−k

eiα sin−1�kx∕k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �kx∕k�2

p eikxxeiz
ffiffiffiffiffiffiffiffi
k2−k2x

p
dkx; (4)

where k is the wavenumber and α is a (real) parameter determin-
ing the radius of the main lobe of the field via r ≈ α

k. The intensity
profile of the field with λ � 0.532 μm and α � 800 is shown in
Fig. 1(a). In the paraxial regime, one can write E�x; y; z� �
ψ�x; y; z�e−ikz and approximate Eq. (3) by using the slowly vary-
ing envelope approximation j ∂2ψ∂z2 j ≪ j2k ∂ψ

∂z j, leading to the para-
xial wave equation,

i
∂ψ
∂z

� 1

2k
∇2

⊥ψ ; (5)

which is formally equivalent to the Schrödinger equation from
quantum mechanics, for which accelerating solutions were first
suggested [1]. The accelerating solution for the paraxial equation

Fig. 1. Propagation dynamics of coherent and incoherent accelerating
beams at wavelength λ � 532 nm. (a) Propagation of a coherent non-
paraxial accelerating beam with radius parameter α � 800. The width of
the main lobe is approximately 2 μm. (b) Propagation of an incoherent
nonparaxial accelerating beam with the radius parameter uniformly
distributed in the range α ∈ �784; 816�. The calculated bending angle
in both cases is 160°, and the width of the main lobe is approximately
9 μm. (c) Spatial correlation function jμ�x1; x2�j2 at z � 0 for the
incoherent beam presented in (b). The spatial correlation distance at
z � 0 is calculated to be l c ≈ 2 μm.
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is the Airy beam [2], which moves along a parabolic trajectory.
The ideal nondiffracting Airy solution carries infinite power.
However, one can truncate the ideal solution and obtain a finite-
power solution, which accelerates for a finite distance [2,3]. We
can write this accelerating solution using dimensionless variables
x̃ � x∕x0 and z̃ � z∕�x20k�:

ψ̃�x̃; z̃� � Ai

�
x̃ −

�
1

2
z̃
�

2

− iaz̃
�

× exp
�
ax̃ −

1

2
az̃2 � 1

12
iz̃3 −

1

2
ia2z̃ −

1

2
iz̃ x̃

�
; (6)

where x0 is a characteristic width of the main lobe of the Airy
beam and a is an exponential truncation factor. The accelerating
trajectory, in real units, is x � z2∕4x30k2. The intensity profile of
such a beam is shown in Fig. 2(a). It is important to note that the
spatial spectrum of the wave in Eq. (6) is Gaussian-shaped and has
a cubic phase [2,3].

3. INCOHERENT SELF-ACCELERATING BEAMS:
USING ACCELERATING MODES

A. Theory

Next, we construct partially spatially incoherent accelerating
beams from these paraxial and nonparaxial solutions [Eqs. (6)
and (4), respectively]. Based on the coherent mode representation
of the coherence function [Eq. (2)], it is clearly seen that if

only some of the modes are accelerating while the others do not
accelerate, then the entire incoherent beam will exhibit weaker
acceleration properties (i.e., weaker acceleration and shorter accel-
eration range). Similarly, if all the modes are accelerating but they
do it along different curves, the acceleration of the entire beam
will be washed out and once again the beam will exhibit weaker
acceleration properties. Therefore, we reason that in order for an
incoherent beam to accelerate at a rate and a range equivalent to
that of a coherent beam, the incoherent beam must be comprised
strictly of modes that accelerate along the same curve. In the non-
paraxial regime, such an accelerating incoherent beam should be
constructed from stochastically populated modes that accelerate
along the same circular trajectory with the same origin, but have
different values of the radius parameter α, resulting in a beam
comprised of a set of concentric rings:

E�x; z � 0; t� �
X
n
cn�t�En�x; z � 0�

�
X
n
cn�t�

Z
k

−k

eiαn sin−1�kx∕k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �kx∕k�2

p eikxxdkx: (7)

The acceleration in the nonparaxial regime can persist for large
angles, even when the transverse coherence length, defined as
l c�x̄� �

R∞
−∞ jμ�x̄ − 1

2Δx; x̄ � 1
2Δx�j2dΔx [42], is on the order

of a single wavelength [see Figs. 1(b) and 1(c)]. Importantly, such
an incoherent accelerating beam takes advantage of the fact that
nonparaxial accelerating beams allow a family of solutions accel-
erating on the very same trajectory [22]—circles with different
radii. In the paraxial regime, we construct the incoherent paraxial
accelerating beam from stochastically populated parallel modes,
where all the modes have the same acceleration (determined by x0)
but are differently shifted in x. Thus, this beam at z � 0 is

ψ�x; z � 0; t� �
X
n

cn�t�ψn�x; z � 0�

�
X
n

cn�t�Ai
�
x − Δn

x0

�
ea�x−Δn�∕x0 ; (8)

where Δn is a series of arbitrary shifts (real numbers) that are not
necessarily equally spaced. Thus, the intensity patterns of such
(nonparaxial and paraxial) beams accelerate with the same acceler-
ation properties (rate and range) as a single accelerating mode does.
This behavior persists even when the transverse coherence length l c
is smaller than the width of the main lobe of a coherent beam,
which we estimate to be ∼3x0 [see Fig. 2(d)]. We would like
to highlight what happens when the chosen modes are not accel-
erating along the same trajectory, which happens, for example, in
Eq. (8) due to the different x0 values for different modes. Under
such conditions, the acceleration of the beam suffers dramatically
because the shape-preserving property does not persist. An illustra-
tive example is presented in Supplement 1. The modes presented in
Eqs. (7) and (8) are not orthogonal. However, as stated earlier, the
modal expansion of Eqs. (1) and (2) is valid even in the case of
nonorthogonal modes, provided each mode obeys the
Helmholtz equation. The way to see this is to write the coherence
function W �x1; x2� � hU ��x1; t�U �x2; t�i using the modes in
Eqs. (7) and (8), and then to recast W �x1; x2� into an orthogo-
nal-mode decomposition, akin to Eq. (2) by diagonalization. In
this way, it can be easily seen that the intensity pattern for each
z is the sum of the intensities of the modes in Eqs. (7) and (8),
without interference among modes. It is important to note that

Fig. 2. Finite-size effects on coherent and incoherent accelerating
beams. (a) Propagation of a coherent paraxial accelerating beam with
an exponential truncation factor of a � 0.03, (b) propagation of an in-
coherent paraxial accelerating beam with exponential truncation factor of
a � 0.03 and transverse correlation distance of l c ≈ 1.5x0 at z � 0. The
incoherent beam is described by the Gaussian Schell-model of Eq. (9).
(c) Spatial correlation function jμ�x1; x2�j2 at z � 0 for the incoherent
beam presented in (b); (d) acceleration distance zzcc versus coherence
length l c for paraxial incoherent beams, with a � 0.03, for beams obey-
ing the Schell model (blue) and for beams constructed by the modal
decomposition of Eq. (8) (green). In the coherent case, zacc � 15z0.
In the Schell beams the acceleration dynamics deteriorates only when
l c is on the order of 1.5x0, which corresponds to one half of the main
lobe. The incoherent beam generated using modes that accelerate along
the same trajectory continues to accelerate even though the coherence
length is smaller than x0.
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when the range of cn values that have appreciable amplitudes be-
comes larger and larger, the coherence length l c decreases, and with
it the width of the main lobe increases. Clearly, at the extreme case
of a very small l c and very large width of the main lobe, acceleration
along finite angles or finite distance carries little significance.
However, the interesting cases are the intermediate ones, and these
are the ones that are discussed in this paper.

B. Experiment

Experimental results with incoherent nonparaxial accelerating
beams are presented in Fig. 3. The experimental system is de-
picted in Fig. 3(a). Laser light with a wavelength of λ � 532 nm
is used. A spatial light modulator (SLM) imposes the appropriate
phase profile for generating nonparaxial accelerating beams [22],
and two objective lenses (X60,NA � 0.85) focus the accelerating
beam to the micrometer scale. By moving one of the objective
lenses, we image the intensity pattern at different planes and thus
map out the acceleration trajectory of the beam. Experimentally,
we first generate a coherent nonparaxial accelerating beam, with
the radius parameter α � 800. This beam bends on a circular
trajectory, over an angle of approximately 65°, which is highly
nonparaxial, as presented in Fig. 3(b). Next, we generate an in-
coherent beam where all the modes comprising it accelerate
along the same trajectory, as described by Eq. (7). We do so
by alternating among multiple phase profiles imposed on the

SLM, each of which is properly designed to launch a single accel-
erating beam with a given α parameter. When the SLM alternates
among these phase profiles (at 16 Hz) faster than the integration
time of our camera (1 Hz), the camera measures only the time-
averaged intensity distribution. This measured time-averaged in-
tensity is equal to the intensity distribution of an incoherent beam
constructed from exactly the same modal structure. This is due to
the fact that for incoherent light the interference among modes is
washed out because their fluctuating populations cn�t� are uncor-
related. Likewise, in our experimental realization the interference
among modes is nonexistent because the modes alternate, never
coexisting within the same time window. However, because all the
modes are accelerating along the same trajectory, the lack of co-
herence does not hamper the acceleration. We present two exam-
ples of nonparaxial accelerating incoherent beams, both consisting
of 16 modes. The first is presented in Fig. 3(c), with α spanning
from 786 to 816. It can be seen in Fig. 3(c) that the beam bends
over an angle of approximately 70°, which is even larger than the
coherent case, while maintaining a beam profile that is smooth
and without the oscillations that are an inherent part of any ac-
celerating coherent beam. The coherence length at z � 0 is cal-
culated to be l c ≈ 2 μm. The second example is presented in
Fig. 3(d), with α spanning from 730 to 880. In this case, the main
lobe is very thick, and the coherence length at z � 0 is calculated
to be l c ≈ 0.7 μm, which is about 1.4λ. The beam in the second
example accelerates over an angle of a, which is the same as the
coherent beam generated using similar parameters. Thus, we have
experimentally demonstrated an incoherent nonparaxial acceler-
ating beam with a coherence length on the order of a single
wavelength.

4. INCOHERENT SELF-ACCELERATING BEAMS:
USING LIGHT FROM ROTATING DIFFUSER

A. Theory

Having demonstrated how to engineer a highly incoherent
accelerating beam, the next natural question would be: is it pos-
sible to accelerate a beam of natural incoherent light? To answer
that, we analyze the features of quasimonochromatic, spatially in-
coherent accelerating beams generated, for example, with a rotat-
ing diffuser [43,44], or from spectrally filtered sunlight passed
through a pinhole [45]. We analyze such beams in the paraxial
regime, and model them using the Gaussian Schell model [42], in
which the spatial coherence between two points is a Gaussian
function of the distance between them. A similar treatment
was presented for the case of nondiffracting incoherent Bessel
beams [46]. For simplicity, we focus on one-dimensional beams,
but our results apply equally well to two-dimensional cases. Using
a beam with a Gaussian intensity profile, we can write the coher-
ence function at the Fourier plane [42,43]:

W �k1; k2� � I 0 exp

�
−�k1 − k2�2

2σ2

�

× exp
�
−
�k21 � k22�

w2 −
i
3
c30�k31 − k32�

�
(9)

where k1 and k2 are the spatial coordinates in the Fourier plane, w
is the width of the intensity structure of the beam at the Fourier
plane, σ is the width of the spatial correlation function, c0 is the
coefficient of the cubic phase profile, and I 0 is the peak intensity.
In this representation, a coherent, finite-energy accelerating Airy

Fig. 3. Experiments with partially spatially incoherent accelerating
beams. (a) Experimental setup. A laser beam of wavelength 532 nm is
reflected from an SLM that imposes the appropriate phase profile.
When the SLM alternates among these phase profiles faster than the in-
tegration time of our camera, the camera measures only the time-average
intensity distribution. A cylindrical lens Fourier transforms the beam,
which is tightly focused and imaged into a CCD camera using two ob-
jective lenses (X60, NA � 0.85). (b) Measured propagation dynamics of
a coherent nonparaxial accelerating beam, with radius parameter
α � 800. The bending angle is ≈65°, and width of the main lobe is ap-
proximately 2 μm. (c),(d) Measured propagation dynamics of two exam-
ples of incoherent nonparaxial accelerating beams, generated by
temporally modulating the phase profiles on the SLM corresponding to
the radius parameters in the ranges α ∈ �786; 816� and α ∈ �730; 880�,
respectively. The beams in both examples consist of 16 modes. The beam
in (c) has a bending angle of ≈70° and width of the main lobe of ap-
proximately 10 μm, with a transverse correlation distance at z � 0 of
l c ≈ 2 μm, while the beam in (d) has a bending angle of ≈65° and width
of the main lobe of approximately 20 μm, with a transverse correlation
distance at z � 0 of l c ≈ 0.7 μm.
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beam is described by Eq. (9) with σ → ∞. Experimentally, such
an incoherent accelerating paraxial beam is generated by passing a
laser beam through a rotating diffuser, which naturally forms the
beam described by Eq. (9), and subsequently passing the beam
through a mask (e.g., the SLM) displaying the proper cubic phase
profile positioned at the Fourier plane of the beam. The intensity
pattern of such an incoherent accelerating beam [obtained by the
Fourier transform of Eq. (9)] is presented in Fig. 2(b). The spatial
correlation function μ�x1; x2� at z � 0 is shown in Fig. 2(c).
Recalling that ideal Airy beams are not square integrable and thus
the finite-energy solution accelerates in a shape-preserving fashion
only for a finite distance zacc, it is essential to study the effect of
incoherence on zacc. We define zacc as the distance in which the
peak intensity ceases to follow the parabolic trajectory prescribed
by Eq. (6). Analyzing the effect of incoherence on zacc, we reach
the following surprising conclusion, illustrated in Fig. 2(d): even
highly incoherent beams can still exhibit significant acceleration,
similar to their coherent counterparts. The acceleration distance
zacc is only weakly dependent upon the coherence properties of
the beam, as long as the transverse coherence length l c is larger
than approximately half the width of the main lobe of the equiv-
alent coherent beam. Only when l c is smaller than half the width
of the main lobe is the acceleration distance decreased signifi-
cantly, as is shown in Fig. 2(d). This highly surprising behavior
can be explained by making note that the coherence function de-
scribed by Eq. (9) can be decomposed into modes, according to
Eq. (2). These modes are in this case Hermite–Gauss modes with
a cubic phase profile, and the power associated with each mode
decreases exponentially. As is seen in [2,3], the coherent finite
energy Airy beam is the Fourier transform of a Gaussian with a
cubic phase. When the cubic phase profile is imposed on a higher-
order Gaussian, the main lobe of the beam still accelerates, but a
certain amount of power is diffracted away due to the nodes in the
spectrum. We elaborate on the characteristic features of acceler-
ating beams generated using higher-order modes instead of a sim-
ple Gaussian beam and discuss the way they affect the overall
dynamics of the incoherent accelerating beam in Supplement 1.

B. Experiment

We now present the experimental results with incoherent
paraxial accelerating beams. The experimental setup is sketched
in Fig. 4(a). The incoherent beam is obtained by passing a
532 nm laser beam through a rotating diffuser. The beam is then
reflected from the SLM, where the cubic phase pattern is im-
posed, thus achieving the form of Eq. (9). A Fourier transforming
lens is placed to obtain the incoherent accelerating beam, such
that x0 � 75 μm and the truncation parameter is a � 0.075.
To enable proper comparison with coherent accelerating beams,
we first present the propagation of a coherent accelerating beam.
The initial beam and the beam at propagation distance z �
20 cm are shown in Figs. 4(b) and 4(c), respectively. Figure 4(h)
shows the corresponding side view of the propagation, where
the bending of the main lobe is clearly visible. Next, we present
two examples of accelerating beams with incoherent light. In
the first example, the transverse coherence length at z � 0 is
l c � 215 μm, and the initial beam and the beam at propagation
distance z � 20 cm are shown in Figs. 4(d) and 4(e), respectively.
Figure 4(i) shows the corresponding side view of the propagation,
where the bending of the main lobe is again clearly visible, despite
the obvious fact that the intensity oscillations of the beam are

smeared. The smearing is even more pronounced in the second
example with l c � 115 μm, which is on the order of about half
the width of the main lobe of the coherent beam. The initial beam
and the beam at propagation distance z � 20 cm are shown in
Figs. 4(f ) and 4(g), respectively. Figure 4(j) shows the correspond-
ing side view of the propagation. The deflection of the main lobe
is again clearly visible, despite the complete lack of the intensity
oscillations. That is, this incoherent accelerating beam has no
sidelobes whatsoever, in sharp contrast with coherent accelerating
beams where the acceleration (beam bending) is created by the
oscillating structure of the beam. The results are summarized
in Fig. 4(k), where the deflection of the main lobe versus the
propagation distance is plotted. According to our estimates, in
both the coherent and incoherent cases the acceleration dynamics
breaks down at z ≈ 70 cm, which is outside our experimental
regimes. Nevertheless, our experimental results clearly demon-
strate that despite significant incoherence and even when the
transverse coherence length l c can be on the order of one half
the width of the main lobe, the acceleration dynamics persists
in the same way as in the fully coherent case.

5. CONCLUSIONS

In conclusion, we have presented, experimentally and theoreti-
cally, incoherent accelerating beams, in both the nonparaxial
and the paraxial regimes. We have shown that by constructing
the incoherent beam solely of modes that accelerate along the
same trajectory, the incoherence does not hamper the accelera-
tion. We demonstrated experimentally incoherent nonparaxial
beams with a transverse coherence length on the order of a single

Fig. 4. Experiments with two-dimensional incoherent paraxial accel-
erating beams. (a) Experimental setup, where L stands for lens and BS
for beamsplitter. The incoherent beam is generated by a rotating
diffuser followed by an SLM, with x0 � 75 μm and a � 0.075.
(b)–(g) Transverse intensity patterns taken at propagation distance
z � 0 [(b), (d), (f )] and at z � 20 cm [(c), (e), (g)] for a coherent
Airy beam [(b), (c)], an incoherent Airy beam with l c ≈ 215 μm[(d),
(e)], and an incoherent accelerating beam with l c ≈ 115 μm [(f ), (g)];
(h)–(j) side view of beam propagation for the three cases (coherent,
l c ≈ 215 μm, l c ≈ 115 μm), respectively; (k) deflection of the main lobe
of the accelerating beams as a function of propagation distance for the
three cases. It is evident that the incoherence does not affect the accel-
eration for the distances presented.
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wavelength, which accelerate up to the same bending angle as
their coherent counterparts with similar parameters. We demon-
strated how to engineer such beams using temporal modulation of
the phase mask, a technique that will be useful for all applications
where the natural response time is slower than the modulation
speed—for example, particle manipulation along curved paths.
In addition, we analyzed incoherent accelerating beams generated
using natural light, and have shown, theoretically and experimen-
tally, that for a wide range of parameters the incoherence of the
beam does not hamper its acceleration properties. Our work pro-
vides a new outlook for the field of accelerating beams, no longer
treating incoherence as a disruptive effect, but rather expanding the
scope of beam acceleration to incoherent wave packets. Finally, the
concept presented here also applies to accelerating wave packets
outside the domain of optics, for example, accelerating electron
beams, accelerating ion beams, and accelerating beams of cold
atoms, where incoherence often poses major challenges.
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